Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract A top‐down lithographic patterning and deposition process is reported for producing nanoparticles (NPs) with well‐defined sizes, shapes, and compositions that are often not accessible by wet‐chemical synthetic methods. These NPs are ligated and harvested from the substrate surface to prepare colloidal NP dispersions. Using a template‐assisted assembly technique, fabricated NPs are driven by capillary forces to assemble into size‐ and shape‐engineered templates and organize into open or close‐packed multi‐NP structures or NP metamolecules. The sizes and shapes of the NPs and of the templates control the NP number, coordination, interparticle gap size, disorder, and location of defects such as voids in the NP metamolecules. The plasmonic resonances of polygonal‐shaped Au NPs are exploited to correlate the structure and optical properties of assembled NP metamolecules. Comparing open and close‐packed architectures highlights that introduction of a center NP to form close‐packed assemblies supports collective interactions, altering magnetic optical modes and multipolar interactions in Fano resonances. Decreasing the distance between NPs strengthens the plasmonic coupling, and the structural symmetries of the NP metamolecules determine the orientation‐dependent scattering response.more » « less
- 
            Stable high-power narrow-linewidth operation of the 2.05–2.1 µm GaSb-based diode lasers was achieved by utilizing the sixth-order surface-etched distributed Bragg reflector (DBR) mirrors. The DBR multimode devices with 100 µm wide ridge waveguides generated in the continuous wave (CW) regime at 20°C. The device CW output power was limited by thermal rollover. The laser emission spectrum was defined by Bragg reflector reflectivity at all operating currents in a wide temperature range. The devices operated at DBR line with detuning from gain peak exceeding 10 meV.more » « less
- 
            Abstract Metasurfaces are optically thin metamaterials that promise complete control of the wavefront of light but are primarily used to control only the phase of light. Here, we present an approach, simple in concept and in practice, that uses meta-atoms with a varying degree of form birefringence and rotation angles to create high-efficiency dielectric metasurfaces that control both the optical amplitude and phase at one or two frequencies. This opens up applications in computer-generated holography, allowing faithful reproduction of both the phase and amplitude of a target holographic scene without the iterative algorithms required in phase-only holography. We demonstrate all-dielectric metasurface holograms with independent and complete control of the amplitude and phase at up to two optical frequencies simultaneously to generate two- and three-dimensional holographic objects. We show that phase-amplitude metasurfaces enable a few features not attainable in phase-only holography; these include creating artifact-free two-dimensional holographic images, encoding phase and amplitude profiles separately at the object plane, encoding intensity profiles at the metasurface and object planes separately, and controlling the surface textures of three-dimensional holographic objects.more » « less
- 
            We report on development of the mid-infrared antimonide based laser technology targeting dual wavelength operation for intra-cavity difference frequency generation. The devices utilize Y-branch architecture with high order DBR reflectors controlling the laser emission spectrum. The device active region contain asymmetric tunnel coupled quantum well with built in resonant second order nonlinearity. The epitaxially regrown photonic crystal surface emitting GaSb-based lasers will be demonstrated.more » « less
- 
            The DBR diode lasers with asymmetric tunnel coupled quantum wells having built-in resonant second order nonlinearity were designed and fabricated. The devices can generate comparable power in two bands near 2 um separated by ~13 meV as required for intracavity difference frequency generation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
